Discrete variational Hamiltonian mechanics
نویسنده
چکیده
The main contribution of this paper is to present a canonical choice of a Hamiltonian theory corresponding to the theory of discrete Lagrangian mechanics. We make use of Lagrange duality and follow a path parallel to that used for construction of the Pontryagin principle in optimal control theory. We use duality results regarding sensitivity and separability to show the relationship between generating functions and symplectic integrators. We also discuss connections to optimal control theory and numerical algorithms. PACS numbers: 02.30.Hq, 02.40.−k, 02.60.Jh Mathematics Subject Classification: 34A26, 49N15
منابع مشابه
Discrete Hamiltonian variational integrators
We derive a variational characterization of the exact discrete Hamiltonian, which is a Type II generating function for the exact flow of a Hamiltonian system, by considering a Legendre transformation of Jacobi’s solution of the Hamilton–Jacobi equation. This provides an exact correspondence between continuous and discrete Hamiltonian mechanics, which arise from the continuousand discrete-time H...
متن کاملVariational Discrete Dirac Mechanics—implicit Discrete Lagrangian and Hamiltonian Systems
We construct discrete analogues of Tulczyjew’s triple and induced Dirac structures by considering the geometry of symplectic maps and their associated generating functions. We demonstrate that this framework provides a means of deriving implicit discrete Lagrangian and Hamiltonian systems, while incorporating discrete Dirac constraints. In particular, this yields implicit nonholonomic Lagrangia...
متن کاملDiscrete Dirac Structures and Variational Discrete Dirac Mechanics
We construct discrete analogues of Dirac structures by considering the geometry of symplectic maps and their associated generating functions, in a manner analogous to the construction of continuous Dirac structures in terms of the geometry of symplectic vector fields and their associated Hamiltonians. We demonstrate that this framework provides a means of deriving implicit discrete Lagrangian a...
متن کاملDiscrete Lagrangian and Hamiltonian Mechanics on Lie Groupoids
The purpose of this paper is to describe geometrically discrete Lagrangian and Hamiltonian Mechanics on Lie groupoids. From a variational principle we derive the discrete Euler-Lagrange equations and we introduce a symplectic 2-section, which is preserved by the Lagrange evolution operator. In terms of the discrete Legendre transformations we define the Hamiltonian evolution operator which is a...
متن کاملTaylor Variational Integrators
A brief introduction to discrete variational mechanics, motivated by the goal of constructing symplectic onestep methods, will be presented. Followed by the presentation of a new type of variational integrator that utilizes Taylor’s method in it’s construction. Time permitting, we will make some remarks on the pros/cons and stability of constructing the variational integrator from the Lagrangia...
متن کاملVariational and Geometric Structures of Discrete Dirac Mechanics
In this paper, we develop the theoretical foundations of discrete Dirac mechanics, that is, discrete mechanics of degenerate Lagrangian/Hamiltonian systems with constraints. We first construct discrete analogues of Tulczyjew’s triple and induced Dirac structures by considering the geometry of symplectic maps and their associated generating functions. We demonstrate that this framework provides ...
متن کامل